

Exercice 1

commun à tous les candidats

5 points

En 2020, une influenceuse sur les réseaux sociaux compte 1000 abonnés à son profil. On modélise le nombre d'abonnés ainsi : chaque année, elle perd 10 % de ses abonnés auxquels s'ajoutent 250 nouveaux abonnés. Pour tout entier naturel $\,n$, on note $\,u_n$ le nombre d'abonnés à son profil en l'année (2020+n) suivant cette modélisation. Ainsi $\,u_0\!=\!1000$.

- 1. Calculer u₁.
- 2. Justifier que pour tout entier naturel n, $u_{n+1} = 0.9 u_n + 250$.
- **3.** La fonction Python nommée « suite » est définie ci-dessous. Dans le contexte de l'exercice, interpréter la valeur renvoyée par suite(10).

def suite(n): u=1000 for i in range(n): u=0.9*u+250 return u

- **4.a.** Montrer à l'aide d'un raisonnement par récurrence, que pour tout enytier naturel n, $u_n \le 2500$.
- **4.b.** Démontrer que la suite (u_n) est croissante.
- **4.c.** Déduire des questions précédentes que la suite (u_n) est convergente.
- 5. Soit (u_n) la suite définie par $v_n = u_n 2500$ pour tout entier naturel n.
- **5.a.** Montrer que la suite (v_n) est une suite géométrique de raison 0,9 et de terme initial $v_0 = -1500$.
- **5.b.** Pour tout entier naturel n, exprimer v_n en fonction de n et montrer que : $u_n = -1500 \times 0.9^n + 2500$.
- **5.c.** Déterminer la limite de la suite (u_n) et interpréter dans le contexte de l'exercice.
- **6.** Écrire un programme qui permet de déterminer en quelle année le nombre d'abonnés dépassera 2200. Déterminer cette année.

CORRECTION

1. En 2021, l'influenceuse perd $1000 \times \frac{10}{100} = 100$ abonnés et en gagne 250.

$$u_1 = 1000 + 100 + 250 = 1150$$

2. Pour tout entier naturel n:

En (2020+n) l'influenceuse à u_n abonnés, en (2020+n+1) l'influenceuse à u_{n+1} abonnés.

En (2020+n+1), l'influenceuse perd $u_n \times \frac{10}{100} = 0.1 u_n$ abonnés et on gagne 250.

$$u_{n+1} = u_n - 0.1 u_n + 250 = 0.9 u_n + 250$$
.

3. La valeur renvoyée par suite(10) est u_{10} .

Si on exécute le programme et si on arrondit à l'unité on obtient 1977, en 2020+10=2030 l'influenceuse aura 1977 abonnés.

4.a. On veut démontrer en utilisant un raisonnement par récurrence que pour tout entier naturel n, on a : $u_n \le 2500$.

Initialition

 $u_0 = 1000 \le 2500$ donc la propriété est vérifiée pour n=0.

Hérédité

Pour démontrer que la propriété est héréditaire pour tout entier naturel n, on suppose $u_n \le 2500$ et on doit démontrer que $u_{n+1} \le 2500$.

Si
$$u_n \le 2500$$
 alors $0.9 \times u_n \le 0.9 \times 2500$ \Leftrightarrow $0.9 u_n \le 2250$ et $0.9 u_n + 250 \le 2250 + 250$ \Leftrightarrow $u_{n+1} \le 2500$

Conclusion

Le principe de récurrence nous permet d'affirmer que pour tout entier naturel n, on a : $u_n \le 2500$.

4.b. Pour tout entier naturel n:

$$u_{n+1} - u_n = 0.9 u_n + 250 - u_n = 250 - 0.1 u_n = 0.1 \times (2500 - u_n) \ge 0$$
.

La suite (u_n) est croissante.

- **4.c.** La suite (u_n) est croissante et majorée par 2500 donc la suite (u_n) est convergente.
- **5.a.** Pour tout entier naturel n:

$$v_n = u_n - 2500 \Leftrightarrow u_n = v_n + 2500$$

$$v_{n+1} = u_{n+1} - 2500 = 0.9 u_n + 250 - 2500 = 0.9 \times (v_n + 2500) - 2250 = 0.9 v_n + 2250 - 2250 = 0.9 v_n$$

La suite (v_n) est la suite géométrique de raison 0,9 et de premier terme v_0 .

$$v_0 = u_0 - 2500 = 1000 - 2500 = -1500$$
.

5.b. Pour tout entier naturel n:

$$v_n = v_0 \times q^n = -1500 \times 0.9^n$$
 et $u_n = v_n + 2500 = -1500 \times 0.9^n + 2500$.

5.c. $0 \le 0.9 < 1$ donc $\lim_{n \to +\infty} 0.9^n = 0$ et $\lim_{n \to +\infty} u_n = 2500$.

Le nombre d'abonnés de l'influenceuse deviendra « voisin » de 2500 dans un avenir lointain.

6.

n=0 u=1000 while u<=2200: n=n+1 u=0.9*u+250 print(n)

Si on exécute le programme on obtient 16.

Donc, en 2020+16=2036, le nombre d'abonnés deviendra, pour la première année, supérieure à 2200.

On peut vérifier en utilisant la calculatrice :

 $u_{15}=1191$ (arrondi à l'unité) $u_{16}=1222$ (arrondi à l'unité).